Advanced Topics in Condensed Matter

Lecture 7: Phonons – Anharmonicity Effects (part II)

Dr. Ivan Zaluzhnyy Prof. Dr. Frank Schreiber

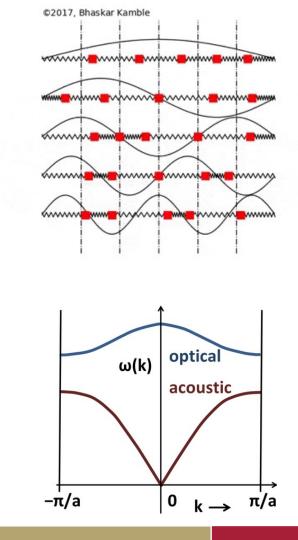
What to remember (from last week)

- Elastic scattering is sensitive to the time-averaged structure
- Inelastic scattering is sensitive to the dynamics

$$G(\vec{r},t) = \frac{1}{N} \left\{ \sum_{n,m=1}^{N} \delta\left(r - \left(\left(\vec{r}_{n}(t) - \vec{r}_{m}(0)\right)\right)\right) \right\}$$
$$S_{coh}(\vec{q},\omega) = \frac{1}{2\pi\hbar} \int G(\vec{r},t) e^{-i\vec{q}\vec{r}} e^{i\omega t} d\vec{r} dt$$

 Inelastic neutron scattering is the best tool to measure phonon dispersion over entire range of ω and k

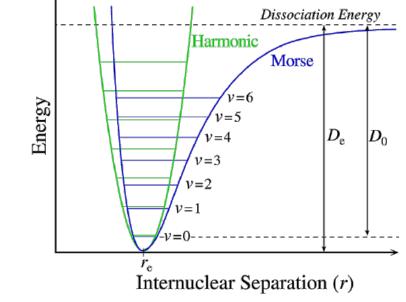
- Raman scattering involves optical phonons (near k=0)
- Brillouin scattering involves acoustic phonons (near k=0)



WiSe 2024/25 | **PHY-VFATCM**

Effects related to anharmonicity

V (r) = a
$$(r-r_e)^2$$
 – b $(r-r_e)^3$ + - ...



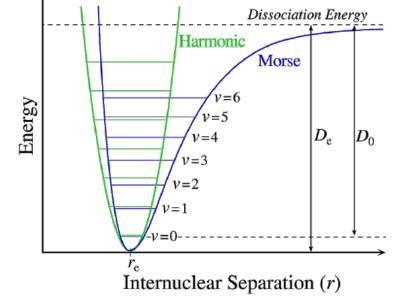
Effects related to anharmonicity

V (r) = a
$$(r-r_e)^2 - b (r-r_e)^3 + - ...$$

- the blue color of water
- thermal expansion $\boldsymbol{\alpha}$ of the lattice
- elasticity parameters $C_{(...)}$ or B and G are T-dependent
- heat capacity is not strictly constant at high *T*; deviation from Dulong-Petit rule $c = 3Nk_{\rm B}$ since equipartition theorem demands Hamiltonian ~ p^2 and ~ x^2
- interaction of phonons with each other (phonon collisions)
- finite lifetime of phonons

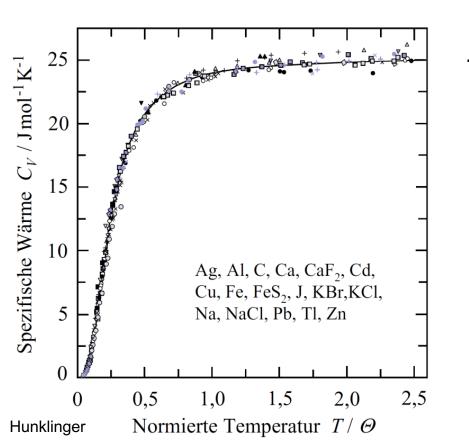
wave solutions with linear superposition not stable with nonlinear terms $\mathcal{O}(u^2)$, *i.e.* $\partial_t \partial_t u = C \partial_x \partial_x u + \mathcal{O}(u^2)$

- heat conduction by phonons
- Grüneisen parameter connects α with c(T) etc

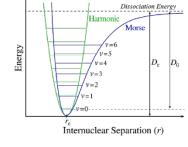


Thermodynamic implications

of anharmonicity

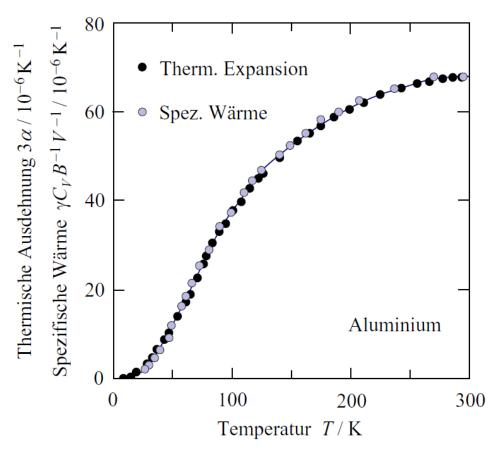


Violation of the Dulong-Petit law,
 i.e. heat capacity is *not* constant
 (and above 3Nk_B) for high *T*



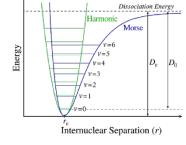
Thermodynamic implications

of anharmonicity



thermal expansion α has very similar *T* dependence as specific heat c(T); explanation by Grüneisen based on thermodynamics

$$\gamma = (\alpha B) / (c \rho)$$



Thermodynamic implications

of anharmonicity

Note the numerous versions of the Grüneisen parameter (and the miracles of thermodynamics)

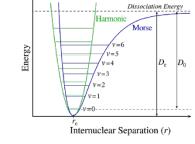
In <u>condensed matter</u>, **Grüneisen parameter** γ is a dimensionless thermodynamic parameter named after German physicist <u>Eduard Grüneisen</u>, whose original definition was formulated in terms of the <u>phonon</u> nonlinearities.^[1]

Because of the equivalences of many properties and derivatives within thermodynamics (e.g. see <u>Maxwell relations</u>), there are many formulations of the Grüneisen parameter which are equally valid, leading to numerous interpretations of its meaning. Some formulations for the Grüneisen parameter include:

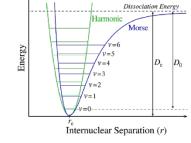
$$\gamma = V igg(rac{dP}{dE} igg)_V = rac{lpha K_T}{C_V
ho} = rac{lpha K_S}{C_P
ho} = rac{lpha v_s^2}{C_P} = -igg(rac{\partial \ln T}{\partial \ln V} igg)_S$$

where *V* is volume, C_P and C_V are the principal (i.e. per-mass) heat capacities at constant pressure and volume, *E* is energy, *S* is entropy, α is the volume thermal expansion coefficient, K_S and K_T are the adiabatic and isothermal <u>bulk moduli</u>, v_s is the <u>speed of sound</u> in the medium, and ρ is density. The Grüneisen parameter is dimensionless.

Wikipedia



Thermodynamic implications



of anharmonicity

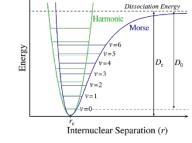
The Grüneisen parameter γ can be related to the anharmonicity.

A proper description of γ is a stringent test for any type of interaction potential.

Lattice	Dimensionality (d)	Lennard-Jones potential	Mie Potential	Morse potential
Chain	1	$10\frac{1}{2}$	$\frac{m+n+3}{2}$	$\frac{3lpha a}{2}$
Triangular lattice	2	5	$\frac{m+n+2}{4}$	$\frac{3\alpha a-1}{4}$
FCC, BCC	3	$\frac{19}{6}$	$\frac{n+m+1}{6}$	$\frac{3\alpha a-2}{6}$
"Hyperlattice"	∞	$-rac{1}{2}$	$-rac{1}{2}$	$-\frac{1}{2}$
General formula	d	$\frac{11}{d}-\frac{1}{2}$	$\frac{m+n+4}{2d}-\frac{1}{2}$	$-\frac{3\alpha a+1}{2d}-\frac{1}{2}$

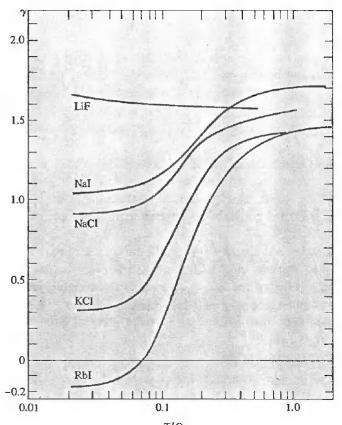
Note that analytical calculcations are possible for model potentials Wikipedia

Thermodynamic implications



of anharmonicity

The Grüneisen parameter γ can be related to the anharmonicity.



A proper description of γ is a stringent test for any type of interaction potential.

Figure 25.1

Grüneisen parameter vs. T/Θ_D for some alkali halide crystals. (From G. K. White, *Proc. Roy* Soc. London A286, 204 (1965).)

Ashcroft / Mermin

Structural Dynamics

Internship at ILL in Grenoble

What to remember

- Harmonic approximation and structural dynamics
- inelastic neutron scattering still best tool to measure $\omega(k)$
- phonon dispersion $\omega(k)$ can be calculated well

Anharmonicity leads to many relevant additional effects

- the blue color of water
- thermal expansion α of the lattice
- elasticity parameters $C_{(...)}$ or B and G are f(T)
- heat capacity is not strictly constant at high *T*; deviation from Dulong-Petit rule $c = 3Nk_{\rm B}$
- interaction of phonons with each other (phonon collisions)
- finite lifetime of phonons

wave solutions with linear superposition not stable with nonlinear terms $\mathcal{O}(u^2)$, *i.e.* $\partial_t \partial_t u = C \partial_x \partial_x u + \mathcal{O}(u^2)$

- heat conduction by phonons
- Grüneisen parameter connects α with c(T) etc

